Development of a deep neural network for predicting 6 h average PM<sub>2.5</sub> concentrations up to 2 subsequent days using various training data

نویسندگان

چکیده

Abstract. Despite recent progress of numerical air quality models, accurate prediction fine particulate matter (PM2.5) is still challenging because uncertainties in physical and chemical parameterizations, meteorological data, emission inventory databases. Recent advances artificial neural networks can be used to overcome limitations models. In this study, a deep network (DNN) model was developed for 3 d forecasting 6 h average PM2.5 concentrations: the day (D+0), 1 after (D+1), 2 (D+2). The DNN evaluated against currently operational Community Multiscale Air Quality (CMAQ) modeling system South Korea. Our study demonstrated that outperformed CMAQ results. provided better skills by reducing root-mean-squared error (RMSE) 4.1, 2.2, 3.0 µg m−3 consecutive days, respectively, compared with CMAQ. Also, false-alarm rate (FAR) decreased 16.9 %p 7.5 7.6 (D+2), indicating substantially mitigated overprediction high concentrations. These results showed when it simultaneously trained using observation data from Notably, more benefits as days increased. suggest our data-driven machine learning approach useful tool implemented models together model-oriented systematic biases.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of An Artificial Neural Network Model for Asphalt Pavement Deterioration Using LTPP Data

Deterioration models are important and essential part of any Pavement Management System (PMS). These models are used to predict future pavement situation based on existence condition, parameters causing deterioration and implications of various maintenance and rehabilitation policies on pavement. The majority of these models are based on roughness which is one of the most important indices in p...

متن کامل

Using GPI-2 for Distributed Memory Paralleliziation of the Caffe Toolbox to Speed up Deep Neural Network Training

Deep Neural Network (DNN) are currently of great interest in research and application. The training of these networks is a compute intensive and time consuming task. To reduce training times to a bearable amount at reasonable cost we extend the popular Caffe toolbox for DNN with an efficient distributed memory communication pattern. To achieve good scalability we emphasize the overlap of comput...

متن کامل

Artificial Neural Network Modeling for Predicting of some Ion Concentrations in the Karaj River

The water quality of the Karaj River was studied through collecting 2137 experimental data set gained by 20 sampling stations. The data included different parameters such as T (temperature), pH, NTU (turbidity), hardness, TDS (total dissolved solids), EC (electrical conductivity) and basic anion, cation concentrations. In this study a multi-layer perceptron artificial neural network model was d...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geoscientific Model Development

سال: 2022

ISSN: ['1991-9603', '1991-959X']

DOI: https://doi.org/10.5194/gmd-15-3797-2022